A Comprehensive Review of Crop Yield Prediction Using Machine Learning Approaches With Special Emphasis on Palm Oil Yield Prediction

نویسندگان

چکیده

An early and reliable estimation of crop yield is essential in quantitative financial evaluation at the field level for determining strategic plans agricultural commodities import-export policies doubling farmer’s incomes. Crop predictions are carried out to estimate higher through use machine learning algorithms which one challenging issues sector. Due this developing significance prediction, article provides an exhaustive review on predict with special emphasis palm oil prediction. Initially, current status around world presented, along a brief discussion overview widely used features prediction algorithms. Then, critical state-of-the-art learning-based application industry comparative analysis related studies presented. Consequently, detailed study advantages difficulties proper identification future challenges The potential solutions additionally prescribed order alleviate existing problems Since major objectives explore perspectives areas including remote sensing, plant’s growth disease recognition, mapping tree counting, optimum have been broadly discussed. Finally, prospective architecture has proposed based studies. This technology will fulfill its promise by performing new research development extremely effective model yields most minimal computational difficulty.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

Neuro-fuzzy Modeling for Crop Yield Prediction

The purpose of this paper is to explore the dynamics of neural networks in forecasting crop (wheat) yield using remote sensing and other data. We use the Adaptive Neuro-Fuzzy Inference System (ANFIS). The input to ANFIS are several parameters derived from the crop growth simulation model (CGMS) including soil moisture content, above ground biomass, and storage organs biomass. In addition we use...

متن کامل

Analysis of Crop Yield Prediction Using Data Mining Techniques

Agrarian sector in India is facing rigorous problem to maximize the crop productivity. More than 60 percent of the crop still depends on monsoon rainfall. Recent developments in Information Technology for agriculture field has become an interesting research area to predict the crop yield. The problem of yield prediction is a major problem that remains to be solved based on available data. Data ...

متن کامل

Modified Naïve Bayes Based Prediction Modeling for Crop Yield Prediction

Most of greenhouse growers desire a determined amount of yields in order to accurately meet market requirements. The purpose of this paper is to model a simple but often satisfactory supervised classification method. The original naive Bayes have a serious weakness, which is producing redundant predictors. In this paper, utilized regularization technique was used to obtain a computationally eff...

متن کامل

Prediction of Potato Crop Yield Using Precision Agriculture Techniques

Crop growth and yield monitoring over agricultural fields is an essential procedure for food security and agricultural economic return prediction. The advances in remote sensing have enhanced the process of monitoring the development of agricultural crops and estimating their yields. Therefore, remote sensing and GIS techniques were employed, in this study, to predict potato tuber crop yield on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3075159